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Abstract

TheccNUMAarchitecture of the SGIOrigin2000hasbeenshown
to performand scalefor a wide range of scientificand engineer
ing applications. This paperfocuseson a well knowncomputer
graphicshierarchical algorithm- waveletradiosity- whoseparal-
lelizationis madechallengingby its irr egular, dynamicand unpre-
dictablecharacteristics.Our previousexperimentationshasedon
a naive parallelization, showedthat the Origin2000 hierarchical
memorystructue waswell suitedto handlethe natural datalocal-
ity exhibited by this hierarchical algorithm. However, our crude
load balancingstrategy wasclearly insuficientto benefitfromthe
whole Origin2000 power We presenthere a fine load balancing
analysisand then proposeseveral enhancementsjamely”lazy
copy” and”lur e”, that greatly reducelocks and syndronization
barriersidle time Thenew parallel algorithmis experimentecn
a 64 processos Origin2000. Evenif in theory a communication
over-costhasbeenintroduced,we showthat data locality is still
preserved.Thefinal performancesvaluationshowsa quasiopti-
mal behavior at leastuntil the 32-processorscale Hereafter a
problematictroublespothasto beidentifiedto explain the perfor-
mancedegradationobservedat the 64-processoscale

1

The emepgenceof mary efficient hierarchicalalgorithmsfor solv-

ing very large numericalproblemsin scientific and engineering
computinghasbroughtouttheneedof dedicatecarallelhierarchi-
cal architecture$5]. Since,severalresearctprojectshave focused
their work on the design,the implementationand the evaluation

I ntroduction

of hardwarecache-coherergharecaddresspacemultiprocessors:

amongthem,the MIT alewife maching[1], or the StanfordDASH
prototype[14]. Thesestudieshave ledto commerciakrealizations,
suchasthe SGI Origin2000[12], whichis ccNUMA machinewith
ascalabldaistributedsharednemory(DSM) architecture TheOri-
gin2000hasbeenshown to deliver good performanceby a recent
evaluationpaper11], basedon a wide rangeof kernelsandappli-
cationsfrom the SPLASH-2suite.

Waveletradiosity[10] is anefficient computergraphicsmethod
to computethe inter-reflectionsof light in Lambertian(i.e. dif-
fuse) environments. The radiosity- power per unit area[W/r?] -
onagivensurfaceis definedasthelight enegy leaving the surface
perunit area,andis governedby anintegral equationinvolving all
othersurfacesof the input scene.This equationis solved usinga
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finite elementapproachwhich computesan approximatiorof the
radiosity function as a finite linear sum of wavelet functionsde-
fined over 2D supports. The parallelizationof wavelet radiosity
is a key issuein orderto bypassits huge computationtime and
memoryrequirementsandto computesimulationsof complex en-
vironmentsin areasonabléime. However, aswith all hierarchical
N-Body methods this algorithm hashighly irregular and unpre-
dictabledataaccespatternghatmakeits parallelizationchalleng-
ing [16].

As suggestedy [15] and demonstratedby a recentpaper[9],
distributed architectures,and their associatednessagepassing
paradigm,are definitely not well suitedfor parallel hierarchical
radiosity algorithms. On the contrary the sharedaddressspace,
andthe hierarchicaimemorystructure provided by the ccNUMA
architectureappeatrto be particularlywell adaptedo handletheir
intensive communicatiorand synchronizatiomeeds. The exper
imentswe performedwith our first naive parallelization[4] on
the Origin2000shovedthatan excellentdatalocality could be af-
fordedwith minimal efforts[3]. However, thecrudeloadbalancing
implied by this naive parallelizationdid not allow usto getanop-
timal parallel performance.So now, what are the key problems
involved in our simple load balancingstrategly, and how canwe
solve them? Then, doesthe new parallel algorithm still present
gooddatalocality? And mostof all, doesit performbetter?

We startin Section2 by briefly describingthe ccNUMA archi-
tectureof the Origin2000,focusingon the mainfeaturesaffecting
performanceln Section3, we recallour previouswork onthepar
allelization of the wavelet radiosity algorithm,and shav how we
couldobtainavery gooddatalocality. Thenin Section4, we high-
light the load balancingproblemsthat impedeperformanceand
proposesolutionsreducinglocks andsynchronizatiorbarriers.In
Section5, we presentand discussthe resultsof our enhancedl-
gorithm, shaving thatdespitethe introducedcommunicationgnd
supplementaryork, datalocality is still presered. We find that
our new parallelalgorithmcanafford superlineaspeed-upat the
small16-processoscale . andacceptablespeed-uat themoderate
32-processoiscale. However, a trouble spotremainsto be iden-
tified to explain the 64-processoscaleperformancedegradation.
Finally, conclusionandfuturework arepresentedn Section6.

2 Understanding ccNUMA architecture

In orderto fully benefitfrom a computersystemperformanceijt
is really importantto understandhe underlyingarchitecture.As
shavn by Figure 1(a), the SGI Origin2000is a scalablemulti-
processofupto 1024 processorsyith distributedsharednemory
(DSM), basedon the SNO (ScalableNode0) architecturg7]. The



basicbuilding block is the node board, composedof two MIPS

R10000processorseachwith separate32 KB first level (L1) in-

structionanddatacacheson the chip with 32-byte cacheline, and
a unified (instruction and data), commonly4 MB, two-way set
associatie secondevel (L2) off-chip cachewith 128-byte cache
line. Eachnodecontains64 MB to 4 GB of main memory(and
associatedlirectorymemory),accessibléhrougha customcircuit

calledthe hub Large SNO systemsare built by connectingthe
nodegogethewia ascalablanterconnectiometwork. Connecting
two nodesis doneby connectingheir hub chipsthrougha router,

which canbeitself connectedip to six hubsor otherrouters.Fig-

ure 1(b) shows the topologyof the 64 processor©rigin2000used
for this paper:eachnodehas768 MB of main memoryfor atotal

of 24 GB.
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Figurel: ScalableDSM Origin2000[7].

The SNO architectureallows the memoryto be physically dis-
tributed,while makingall memoryequallyaccessiblérom a soft-
ware point of view, in a ccNUMA approach.NUMA standsfor
non uniform memoryaccess.Indeed thetime neededor access-
ing memoryclearly depends=on its locationin the memoryhier-
archy (seeTable1). A given processonly operateson datathat
areresidentin its cache:aslong asthe memoryis presentin the
cache accesgimesarevery short;on the contrary a delayoccurs
while a copy of the datais fetchedfrom memoryinto the cache.
Thetwo processesf agivennodehave quick accesshroughtheir
hubto theirlocal memory Accessingemotememorythroughan
additionalhubaddsanextraincremenbf time,asdoeseachrouter
the datamusttravel through. Moreover, as memoryis manipu-

latedthroughcopiesin the cachesit may happerthatseveral pro-
cessehave a cachedcopy of the samelocationat the sametime.
Thus,thefirst processnodifying thatdatamustinstantlyinvalidate
all othercachedcopiesof thelocation,preventingotherprocesses
from usingthis "staledata”. Thisis theissuecachecoherencécc),
which is managedy the hardwarein the SNOarchitecturewith a
directory-basedachesohereng schemeasin [13].

| Memorylevel | Readlateny |
L1 cache 5.1ns
L2 cache 56.4 ns
Localmemory 313 ns
Hubto hub (samerouter) 497 ns
Thenfor eachhop +100 ns

Tablel: Loadlatenciedor the differentmemorylevels[7].

Obviously, if thesharednemoryis seemasacontiguougangeof
virtual memoryaddresseghe physicalmemoryis actuallydivided
into pageswhich aredistributedall over the system.The default
pagesizeis of 16 KB, but it canbechangedvith thedpl ace util-
ity. For every memoryaccessthe operatingsystemhasto trans-
late the virtual addressnto the physicaladdressequiredby the
hardware.A hardwarecachemechanismthetranslationlookaside
buffer (TLB), keepsthe 64 mostrecentlyusedpageaddressesl-
lowing aninstantvirtual-to-physicatranslatiorfor these64 pages.
Thisallowsa2 MB memoryspacegfor thedefault pagesize)to be
addressedvithout translationpenalty Programsusinglarger vir-
tual memorymayreferto avirtual addressvhichis not cachedn
the TLB. In thesecase(TLB miss),thetranslationis doneby the
operatingsystem,n thekernelmode:the memoryreadlateng is
thenof approximatelyl0 000 ns,in the (common)casewherethe
pagehasnot beenswappedo thedisk.

As a conclusion,the SNO architectureof the Origin2000 pro-
videsboththe programmingsimplicity of a sharedmemoryarchi-
tectureand the scalability of a distributed memory architecture,
by eliminatingthe finite bandwidthof a commonbus. For our 64
processorsnachine the numberof routerhopg is at the mostof
five and on averageof 2.97, thus giving an averagereadlateny
of 796 ns(with a TLB hit). However, in orderto getoptimal per
formancejt seemsecessarfor programgo usethe cachesffec-
tively, thatis the greatmajority of dataaccesseshall be satisfied
from the cachesthusmakingthe accesgime to memory(local or
remote)lessimportant. This canbe achierzed by applyingthe two
straightforvard principlesof datalocality:

e spatial locality: a programshoulduseevery word of every
cacheline (128 bytes)it touches,to avoid the time wasted
copying theunusedartsof theline;

e tempoal locality: a programshouldusea cacheline inten-
sively, andthennotreturntoit later, becaus@& mayhave been
replacedoy otherdata.

At least,a processshouldusethe memorythatis closestto the
processoiit runson. Fortunately the SNO architectureprovides
both hardware and software featuresfor improving performance,
including supportfor dynamicpagemigration (in orderto have
datapagesresideprimarily in local memory)and prefetching(so
memory-fetchcanbe overlappedwith execution).

1The numberof routersthatcould handlea requesfor memorydata.



3 Early parallel wavelet radiosity

Our parallelizationwork takes placeinside the CANDELA plat-
form, which is a researchproject designedto provide a flexible
architecturefor testingandimplementingnew radiosityandradi-
ancealgorithms[17]. The CANDELA softwareis basednthe SGI
Openlnventorlibrary, andconsistof about400 C++classes.
We first briefly describeasit is implementednside CANDELA,
the sequentiablgorithmwe have choserto parallelize. Then,we
highlight the two key, but conflicting, aspectdo facewhen par
allelizing a hierarchicalradiosity algorithm - load balancingand
datalocality - andwe illustratethem,basedon our sequentialm-
plementationFinally, we presenbur two early parallelalgorithms
andtheperformanceesultswe could obtainon the Origin2000.

3.1 Sequential algorithm

Our purposehereis not to enterinto the underlyingdetailsof our
sequentiaimplementation but ratherto highlight the termsthat
will beimportantfor our analysis. A more detailedpresentation
canbefoundin [4].

Basically the sequentiablgorithmis basedon the Southwellit-
eratvemethod6], andit proceedssfollows. A subsebf theinput
scenesurfaceshave initial enegy, eitherself-enegy, or dueto di-
rectillumination by pointlight sourcesthey arefirst insertedinto
a sortedlist of surfaceswith enegy to emit (or residualenegy),
sortedby decreasingnegy. Then,successie shootingiterations
are performedto updatethe scenesurfacesradiosity function. At
the beginning of eachshootingiteration, the first surface, S., of
thesortediist (i.e. the surfacewith the mostresidualenegy) is re-
movedfrom thelist. Its residualenegy is successiely propagated
to every othervisible surface, S.., of the scene:for eachinterac-
tion betweenthe emittingsurfaceS, anda receivingsurfaces,.,
anenegy transferis computedo updatethe radiosityfunction of
S,-. A partof theenegy recevedby S, is absorbedandthe other
is reflected andthusaddedo theresidualenegy of S,., whosepo-
sitionin the sortedlist hasto be updatedcconsequentlyA shooting
iterationis completedafterall enegy transfersbetweenS, andits
receving surfacesS, arecompleted.Finally, the residualenegy
of S, is resetedandthe next shootingiterationbegins, unlessthe
desiredcorvergencerate hasbeenreached.

In order to optimize the enegy transferfor a given surface-
surfaceinteraction,we usea multi-level representationf the ra-
diosity function over the surfaces. Eachsurfaceis representeds
a quadtreeof meshelementsover which the radiosity functionis
projectedontowaveletbasisfunctions. Figure2 shavs aninterac-

tion betweena triangle and a parallelogramand their associated

hierarchicadatastructuresTheenegy transferstartsatthehigher
level of the quadtrees.An oracle function decidesif the trans-
fer canbe donebetweerthe two currentmeshelementspasedon
an evaluationof the committederror. If this erroris too high, a
lower level of one of the two surfaces(usually the biggestone)
mustbe used:the enegy transferis recursiely continuedbetween
the currentmeshelemenbf thenonchosersurfaceandeachof the
lower-level meshelementsthatmayhaveto becreatedpf thecho-
senone. Enegy canthusbe transferecbetweenary levels of the
guadtreesasshavn by Figure2. Whenthe radiosityfunction has
to be updatedover thewhole surfacequadtreea push/pullmecha-
nismis usedto transmitthe enegy betweerits differentlevels.

2Ratioof total remainingresidualenegy over total initial residualenegy.

Oracle test between the higher levels /,”",‘
‘q ________________ - < .

— . 55
== 2 ﬂ

Figure2: Hierarchicalenegy transfer

The oracle function involves several userdefined parameters,
that allow to control the numberof meshelementssubdiisions.
For instance the limit size of a meshelement(si zeLi mi t), or
theminimalratio of broughtenegy overthealreadypresenenegy
(r adi osi t yRat e), underwhichnosubdvisionis done.Finally,
the oraclefunction requiresa greatnumberof visibility compu-
tationsto estimatethe error due to the enegy transfer: they are
optimizedusing a binary spacepartition (BSP) of the scene but
couldalsobeacceleratedisingavailablegraphicshardware.

3.2 Overview of parallélization challenges
Load balancing

Let us considerthe classroommodel provided by PeterShirley,
whichis aradiosityreferencdestscene Theinitial model,shoved
onFigure3(a),is composedf 3 153 initial surfacesandfour emit-
ting surfaceson the ceiling. Figures3(b) and 3(c) shov images
of theradiositycomputatiorresult. The thin shadevs on the floor
shaw the precisionof the solution,andthusthefine meshelements
decompositiordoneonthelargeinitial floor surface.

(b) Final result(detail).

(c) Finalresult(detail).

Figure3: Theclassroontestscene.



The sequentiakbxecutiontook about9 200 seconddo compute
the 540 shootingiterations for aremainingratio of residualenegy
to shootof 2 %. Thefinal solutionis composedf 62 218 mesh
elementsincluding47 448 final leafs. Figure4(a) showns boththe
individualtime neededo computeeachshootingiteration(vertical
boxes), and the cumulatedtime. The correspondinglecreasef
total residualenegy is showvn on Figure4(b), whereeachvertical
box representsheresidualenegy of the currentemittingsurface.
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Figure4: Sequentiakxperiment(classroonscene).

Althoughtheclassroontestscends relatively simple,thesetwo
Figuresillustratetheirregularandunpredictablecharacteristicef
thewaveletradiosityalgorithm. Indeed the tenfirst shootingiter-
ationsareresponsibldor about88 % of the total residualenegy
decreas@and68 % of thetotal executiontime. Thefirst four ones
concernthe four ceiling surfacesillumination, while the mostim-
portantinter-reflectionsaarehandledby thenext six ones.Then,the
desiredcorvergenceis slowly reachedvith all theremainingshort
(betweent and10 second®ach),of low residualenegy, ones.

As we can seeon Figure 4, the computationtime of a given
shootingiterationis far from beingproportionalto the correspond-
ing residualenegy. Worst, a shootingiteration (for instance,
the 8t") may take longer than anotherone (the 6!*) having less
residualenegy. As we will seein the next Sectionthe samekind
of irregularity canbe foundinsidea shootingiteration.

Finally, the oraclefunctionparametersaygreatlyinfluencethe
computatiortime of shootingterations.For instancethefour ceil-
ing surfaceshave exactly the sameinitial residualenengy, but their
respectire shootingiterationstake lessandlesstime! Thisis due
tother adi osi t yRat e parametetheresetto 5 %. Indeedthese
shootingiterationsconcernthe samereceving surfaceswhich ac-
cumulatemore and moreenegy. Thus,the enegy transfersare
donequicker on higherandhigherlevels of the quadtrees.

Data locality

As explainedin Section2, datalocality is essentialn orderto sus-
tain high parallelperformancegspeciallyon the Origin2000:it is
necessaryhatthe applicationachiezesa very high ratio of cache
hits ateverylevel (L1, L2, TLB) of thememoryhierarchy

Let us consideranothereferenceadiositytestscenealsopro-
videdby PeterShirley, andshonvn on Figure5. This sceneconsists
of 10x10 dinnerrooms,andcontainst1 800 initial surfacesamong
which 100 ceiling emittingsurfaces Largescenedik e thisoneare
problematicfrom a datalocality point of view, for two mainrea-
sons. First, every new shootingiterationmay involve totally dif-
ferentmemoryaccessefrom the previous one,dependingon the
locationof the correspondingmitting surfacesin the scene.This
is even more problematicwith the dynamiccreationof meshele-
ments. Indeed,the meshelementsof a given surfacemight have
beencreatedby differentshootingiterations. Second the visibil-
ity computationsequiredby the oraclefunction may involve ary
surfaceof the scene.

As a consequenceary partof the constantlyevolving memory
may beaccessedtary time duringthewhole computation.
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Figure5: Thedinnerroomstestscene.

3.3 Paralle algorithms

An efficientapproacto getanoptimaldatalocality is to distribute
thedatabasemongthe differentlocal memoriesasin a message-
passingschemethusrestrictingthe processe$o access limited
part of the whole memory For instance,[2] usesa spatialsub-
division of the input sceneinto sub-enironments which are dis-
tributedamongprocessestheseonesonly computeenegy trans-
fersfor thesurfaceshey areassignedo, andenegy exchangede-
tweensub-ewironmentsareperformedhroughvirtual interfaces
Unfortunately if this kind of techniquecanbe successfullyap-
plied to classicalradiosity algorithms, it becomesrather ineffi-
cientfor hierarchicaradiosityones.evenwith elaboratedlynamic
group partitioningmethodg8]. Then,the alternateway is to ex-
ploit thenaturaldatalocality exhibitedby thesealgorithmsthrough
thememoryhierarchyof DSM computersassuggesteéh [15].

Granularity choice

Our wavelet radiosity algorithm presentsthree levels of paral-
lelism: acrossshootingiterationsacrosenegy transfergbetween
input surfaces) andacrosaneshelementsChoosingthe granular
ity for the parallelizationis a difficult task, sinceit may greatly
influencebothloadbalancinganddatalocality.



The finest granularity (acrossmeshelements)allows an opti-
mal load balancing,asin [16]. However, sincea meshelement
may be updatedby severalprocessesat the sametime, it hasto be
lockedfor exclusive accessthisapproacthasto bekeptfor radios-
ity simulationsof small scenes|eadingto a moderatenumberof
meshelements We so have choserto focuson thetwo remaining
coarsemranularitiegacrossshootingiterationsandacrossenegy
transfers}o implementthe two following parallelalgorithms.

ETL and SIL algorithms

Enegy transferdevel (ETL): thisis historicallythefirst parallelal-
gorithm we have implemented. For simplicity reasonswe have
choserto performtheshootingiterationsoneaftertheother, in ex-
actly the sameorderasin the sequentiaklgorithm. For a given
shootingiteration, all the enegy transfers,for the correspond-
ing emitting surface,aredistributedfor parallelprocessing.Each
processstartsby making an independentopy of the complete
guadtreeof the emittingsurface,sothatfurthermeshelementsie-
compositionamay be doneon it without accessonflicts. Then,
it getsa receving surfacefrom a centralizedlist and computes
the correspondingenegy transfer The copy of the emitting sur
face quadtreeis reusedfor all assignedreceving surfaces,until
no oneremainsin thelist. At that point, the processwaits on a
synchronizatiorbarrier for all other processeso completetheir
enepy transfer before switching to the next shootingiteration.
Synchronizatiorbarriersseparatinguccessie shootingiterations
allow processeanexclusive accesso thereceving surfaceswith-
outary additionallock.

Shootingiteration level (SIL): in this algorithm, eachprocess
is now assignedo a completeshootingiteration. As in the ETL
algorithm, a given processstartshy makingan independentopy
of the quadtreeof the emitting surfaceit hasbeenassignedo, so
thatthis surfaceis still ableto receve enegy from otheremitting
surfacesasshavn on Figure7(a). Then,it successiely computes
theenegy transferdor all its receving surfacespeforeit requests
the next shootingiteration. Here, sincemary shootingiterations
are performedat the sametime, a surfaceis likely to simultane-
ouslyreceve enegy from seseralemitting surfaces,andsohasto
belockedfor exclusive access.

First results

Thesetwo parallelalgorithmshave beenimplementediusingIRIX
spr oc’ed processesSincemary meshelementsubdvisionsoc-
cur at the sametime duringthe computationsgnary memoryallo-
cationshave to be donein parallel. We thushave overloadedhe
standardmal | oc, free, real |l oc andcal | oc functions,in
orderto provide atransparentgontentionfree, memoryallocation
package.Basically anar ena is allocatedand assignedo each
processsothatit canfreely allocateits needednemory

Ouir first experimentation$4, 3] ona 64 processor©rigin2000
shaved encouragingesults,especiallyfrom a datalocality point
of view. Indeed we could obtaincachehits ratesof approximately
97 % for the L1 cacheand93 % for the L2 cache. This behar-
ior canbe explainedby the two following kinds of datalocality,
aspresentedn Section2. First, our applicationexhibits goodspa-
tial datalocality thanksto the hierarchicauadtrealatastructures,
combinedwith our memoryallocationmechanism.Indeed,for a

ousmemorypartsof thesamear ena. Secondthetemporaldata
locality is also excellent, since,for a given enegy transfer both
thequadtreadatastructureof thetwo interactingsurfacesandthe
BSPcellsusedfor visibility computationsarereusednary times.
To summarizethe working setfor a givenenegy transferis defi-
nitely well adaptedo thelarge cachef the Origin2000.

Ontheotherside,load balancing,andconsequenthscalability
werenot really satisfying.Indeed,we evendid not obtainalinear
speed-umtthesmall16-processoscale andtheparallelefficiency
at the moderate32-processoscalewaslimited to about50-60 %.
Thesemitigatedresultsare mainly dueto our naive parallelalgo-
rithms,aswe shallseein the next Section.

4 Enhancing load balancing

We first presentn this Sectionafine loadbalancinganalysisof the
implementatiorof thetwo parallelalgorithms(ETL andSIL) pre-
sentedin Section3, highlighting both advantagesand drawbacks
in termsof scalability Then,we proposetwo enhancementthat
partially resohed the raisedproblems. Finally, in orderto bene-
fit both from the advantageof the two algorithms,andfrom our
introducedechniquesywe present brand-nev parallelalgorithm.

In orderto illustrateour analysiswe will usetasksdiagramrep-
resentingthe executionof our differentalgorithms,on the class-
roomtestsceneof Figure3. For instance Figure6(a) shavs parts
of the tasksdiagramfor the sequentiablgorithm: eachfilled box
representa singleenegy transferits lengthbeingits computation
time, andits color determiningthe emittingsurface.A setof boxes
of thesamecolor correspond$ acompleteshootingiteration,and
thusto a singleverticalbox on Figure4(a).

Tasksdiagramsallow to give a betterunderstandingf the be-
havior of our waveletradiosityalgorithm,especiallyat the enegy
transferlevel. At the very beginning of the algorithm, emitting
surfaceshave alarge residualenegy (Figure4(b)), andreceving
surfacesarefree of meshelementsubdvision. So,thefirst enegy
transfersarevery irregularandunpredictablén term of computa-
tion times. On the classroontestscene(Figure 6(a)), the enegy
transferbetweena ceiling emitting surfaceandthelargefloor will
take mary moretime thanwith any otherreceving surface,due
to the mary occludingchairsandthe table. As the computation
proceedsemitting surfaceshave lessandlessresidualenegy, and
receving surfacesaccumulatanoreand moreenegy on their nu-
merousmeshelements. Thus, the computationtimes of enegy
transfersoecomeshorterandshorter andmorehomogeneous.

Let us now seehow thesetaskscan be distributed for parallel
processingwhile taking carefor their precedingorder Indeed,
somesurfacescanonly transfertheir enegy afterhaving receved
it from othersurfaces.Onthecontraryfor agivenemittingsurface,
theorderof receving surfacesprocessings notimportant.

4.1 Early algorithmsanalysis
Energy transfer level (ETL)

Parts of the tasksdiagramfor the ETL algorithm executionwith
se/en processe®n the classroomtest sceneare shavn on Fig-
ure 6(b) and6(c): hatched’Sync” boxescorrespondo idle time
waiting on the synchronizatiorbarrier betweensuccessie shoot-
ing iterationsand”Copy” boxesrepresenthetime neededo make

given surface, a large numberof meshelementsdecompositions acopy of theemittingsurfacequadtredeforethefirstenegytrans-

aredoneby the sameprocessandarethusallocatedon contigu-

fer. Thetiled boxescorrespondo asideeffectdueto theuseof the
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Figure6: Tasksdiagramfor the sequentiabndearly parallelalgorithms(classroonscene).

Openlinventorlibrary: ashortpartright atthe startof thecopy has
to be doneinside a critical section,making processedegin their
copy oneaftertheother

Synchronizatiorbarriersare particularly problematicat the be-
ginning of the algorithm (Figure 6(b)). Indeed,inside a given
shootingiteration, the enegy transfersarelikely to be very dif-
ferentin length, and are so quite impossibleto be equally dis-
tributed. A few enegy transfersaretime consumingwhile others
areshorterandquickly handledby remainingprocessesTypically,
on the classroontestscenefor eachceiling emitting surface,the
first enegy transferto the floor surface may take more than half
total shootingiteration computationtime, due to the mary shad-
owsto catch.Thisis obviously moreproblematicasthenumberof
processemcreasesthe more processeshereare,the soonerthe
remainingof the enegy transferds completedandthe moretime
is lost on the synchronizatiorbarrier For a given shootingitera-
tion, if L; (¢ € [1..T']) arethe respectre computationtimes for
theenegy transfergo its T' receving surfacesthenthe maximum
T

speed-ups boundedby ﬁ andis independenof the num-

berof processesl.:ortunatelzjéslong asthecomputatiorproceeds,

enepy transferdbecomeshorterandcanbe betterdistributed,thus
reducingsynchronizationdle time.

Copying the emitting surfacequadtreds not problematicat the
beginning of the algorithm. Indeed,surfacesarenot yet fully de-
composednto meshelementsand copying is donequickly. On
the contrary the more the algorithm proceedsthe more surface
guadtreexontainmeshelementsandthe more duplicationtakes
time. At thesametime, enegy transfercomputatiortimesbecome

shorter Then,copying the emitting quadtreamay take longerthan
computingall theenegy transfers!Thisis exactlywhathappensit
the endof the computationon our classroontestscenewhenthe
very subdvidedfloor hasto emit a very few residualenegy (Fig-

ure 6(c)): the first threeprocessesompletequickly, but anyway
slowerthanthesequentiaversion theshortenegy transferswhile

thefour remainingonesarestill copying the emittingquadtreeln

this case usingmoreprocessewould only grow theshootingiter-

ationtotal executiontime. Moreover, only the higherlevels of the
emitting quadtreeareusefulat the endof computatiod, soa huge
partof thecopy timeis wasted(Figure7(a)).

Shooting iteration level (SIL)

The SIL algorithmpartially resohesthe ETL algorithmproblems,
but unfortunatelyintroducesew ones.Indeed asin theETL algo-
rithm, the emitting surfacequadtredor a givenshootingiteration
hasto beduplicatedbut the copy is only doneonceby the process
thathandlest, andis reusedor all receving surfaces.This allows
to avoid the problemsof Figure6(c) dueto theOpeninventorlock,
but it still remainsunsatisactory whenthe duplicationis longer
thanthe computatiorof all the enegy transfers.

Moreover, sinceseveralshootingiterationsarehandledn paral-
lel, thereis no needfor synchronizatiorbarrier, exceptat the end,
whenthe desiredcorvergencehasbeenreached.However, since
ary enepgy transfermay be performedat any time, caremustbe
takenfor accessingmittingandreceving surfaces.First, a given

3This is dueto the oraclefunction: emitting surfaceshave lessresidualenegy
while receving surfaceshase moreaccumulateeneny.



surfacecannot receve several enegy transfersat the sametime,
and so must be protectedby a lock by the processhat needsit.

Secondwhena processgetsa new shootingiteration, the corre-
spondingemitting surface may be locked as a receving surface
(previouscase)it sohasto wait for this enegy transferto becom-
pleted,thenlocks the surfaceto make anindependentopy of its

guadtreeandreleaseghe lock, so that the surfacecan continue
to receve enepy transfers,as shavn on Figure 7(a). Note here
thatduplicatingthe emitting surfacequadtreds essentiato avoid

a deadlo& betweerntwo processesomputingenegy transfersor

two symmetricainteractions.

Figure 6(d) presentghe tasksdiagramfor the beginning of the
SIL algorithmexecutionon the classroontestscenewith six pro-
cessors:hatched’Lock” boxes representhe time waiting on a
locked surfacefor the associate@negy transferto be completed.
We canseethat this testsceneis not particularlywell adaptedo
this parallelalgorithm. Indeed,only the four ceiling surfaceshave
residualenegy at the beginning of the algorithm, sothe four first
processedealwith oneceiling surfaceshootingterationeachand
theremainingprocessewait for new shootingiterationsto becre-
ated("Wait for job..” boxes).

Thefirst enepgy transferfor eachemittingceiling surfaceshoot-
ing iteration concernsthe floor surface: three processesiave to
wait for the remainingone,who got the lock first, to completeits
computation.Oncethisfirst enegy transferis computedthefloor
surfaceis unlocked, and anotherprocesscan performits enegy
transfer Sincethe floor surfacenow have residualenegy, a nev
shootingiterationhasbeencreatedandassignedo a waiting pro-
cess. This processhowever, cannot startits shootingiteration,
sincethe floor surfaceis currentlylocked as a receving surface.
Obviously, this exampleillustratesthe worst case,where mary
processearewaiting for the samesurfaceinvolving time consum-
ing enegy transfersput similar casehapperwith standardlarger
models. As the computationproceedsenepy transfercomputa-
tion timesdecreasebut locking problemsstill remain,especially
asthenumberof processess growing.

The last drawback of the SIL algorithmis that it corverges
slower than the sequentialand the ETL algorithm, especiallyas
the numberof processeincreases:supplementanghootingiter-
ationsmay be requiredfor the sameresult! For instance,on the
classroontestscene the first shootingiterationfor the floor sur
faceis performedwith lessresidualenegy asit would have if the
four ceiling surfacesshootingiterationshadbeencompleted.

4.2 Lazy copy

Copying theemittingsurfacequadtreeappearso beacritical point
in the ETL andSIL algorithms.Thisis dueto thefollowing:

¢ thestartof thecopy mustbedoneinsidea critical section(not
really problematicfor the SIL algorithm);

e emitting surface quadtreecontainmore and more meshel-
ements,thus increasingcopy time, while shootingiteration
computatiortimesdecrease;

¢ throughthe oraclefunction, only the higherlevels of the du-
plicatedquadtreeemainusefulasthe computatiorproceeds.

The lasttwo points,illustratedby Figure 7(a), naturallyleadto
the idea of using a light copy of the emitting surface quadtree.
For building this so called "lazy copy”, we no longer duplicate

the whole quadtreeut only its higherlevel (the root), keepinga

referenceto the original quadtree. Then,whenthe processeeds
a lower level of the quadtreejt copiesthe informationfrom the

original quadtreejf it exists, or createst on its lazy copy. Low

levels of the quadtreeare only copiedwhen necessaryas shovn

by Figure 7(b). Furthersubdvisionsdoneon the lazy copy are
not copiedbackto the original quadtreesincethey do not contain
supplementargnengy information.

Receiving surface

[

Emitting surface
(can receive energy)

Independant copy

(a) Completecopy.

Receiving surface

[

Emitting surface
(locked)

Reference

Lazy copy

(b) Lazy copy.

Figure7: Enegy transferusinga copy of emitting surface:in this
example,only two levelsof theduplicatedquadtreeareuseful.

In order for that mechanisnto work well, we have to ensure
thattheoriginal surfacequadtreewill notreceive enegy while the
shoatingiterationis beingcomputed.This is not problematicfor
the ETL algorithm, sincethe emitting surfacewill never be a re-
ceving surfaceinside a given shoaotingiteration. Unfortunately
lazy copy cannot be applied”as is” to the SIL algorithm, since
locking the original quadtreewould causedeadlocks. However,
usinglazy copy allows to dramaticallyreducethe ETL algorithm
executiontime, mostly at the end of the computation.Obviously,
the more the emitting surfaceis subdvided, the morethe gainis
important,aswith thefloor surfaceof the classroontestscene.

4.3 Lures

The key problemappearingn the SIL algorithmis the restrictive
accesdo thereceving surfaceqFigure6(d)). Indeed alot of time
may bewasteddling whenmary processefy to computeenegy
transfergowardsthesamereceving surface especiallywhenthese
aretime consuming.Thisis the casefor thefloor of the classroom



testscenewhenit hasto receve enepgy transfersfrom the four
ceiling emitting surfaces.

We so hadto find a mechanismnso thata processo longerre-
mainsidle whenit hasto wait for a receving surfaceto be un-
locked: the basicideais to have the processperformits enegy
transfeiwith adisjointcopy of thereceving surface namelyalure.
Oncetheenegy transferis completedthe computedure quadtree
andtheoriginal receving surfacequadtreemustbe memged.

Copying thereceving surfaceto build thelure couldleadto the
sameproblemsaswhencopying an emitting surface. Indeed,du-
plicatingthewholereceving surfacequadtreanaysometimesake
longerthanwaiting for theotherprocesseto completetheirenegy
transfer Fortunately we do not hereneedthe samekind of infor-
mations. We actually do not needthe surface quadtreeinforma-
tions: only the"surfaceinformations”areduplicatedanda brand
new quadtreds build to computetheenegy transfer(Figure8(a)).

Whena processhascompletedthe enegy transferwith a lure,
the original surfacethe lure wasbuilt from may eitherbe locked
or not. If it is nolongerlocked,the procesdocksit andcaneasily
performthememingoperationasdoneon Figure8(b). In theother
case the processshall not wait for the surfaceto be unlocked, or
all beneficewould be lost. It thusappendsts lure into a list of
"pending” luresassociatedavith the original surface.

We now have to determinéhow andwhenthe pendinglureswill
be memgedwith their original surface.This taskcanbe assignedo
the next processcomputinga shootingiterationwith this surface
asanemitting surface.Another, moreefficient solution,is to have
it doneby the processcurrentlyhaving the lock, onceit hascom-
pletedits enepgy transfer allowing the memingwork to bedivided
amongprocesses.

Emitting surface ~ Emitting surface

Receiving surface (locked) Lure

(a) Enegy transferwith alure.

Emitting surface ~ Emitting surface

25N

2

/// i
// N\ Op //

Receiving surface (unlocked)

Merge

Lure Merged surface

(b) Merging alure.

Figure8: Thelure mechanism.

To be complete,we have to notethat the lure mechanisnrmay
introduceanothersupplementaryork, dependingon the oracle
functionparametersindeedsincealure surfaceis considereavith
anew quadtreeemptyof enegy, ther adi osi t yRat e parameter
taking into accountthe accumulatednegy, cannot play its role,
asif theenengy transferwascomputedvith theoriginal surface.

4.4 A new parallel algorithm

On one hand, the ETL algorithm performsthe samenumberof
shootingiterationsas the sequentialalgorithm and can be opti-
mized with the lazy copy mechanismput suffers from synchro-
nizationbarriersidle time andcannot be helpedby thelure mech-
anism.On the otherhand,the SIL algorithmdoesnot suffer from
synchronizatiorbarriersand may have locksidle time greatlyre-
ducedthanksto the lure mechanismput it hasto computemore
shoatingiterationsfor a samecorvergenceand can not directly
benefitfrom thelazy copy mechanism.

Then, the principle of our new parallelalgorithmis to contin-
uouslyprocesshe enegy transfersof the successie shootingit-
erations’in nearthe sameorder” asin the sequentiaklgorithm.
Actually, whenall enepgy transfersof a given shootingiteration
have beendistributed,andevenif somearenotyetcompletedthe
non-kusyprocessestartcomputinga new shootingiteration,with
the surfacecurrently in the first place of the sortedlist. So, this
may not be the sameemitting surfaceasif they hadwaitedfor the
previous shootingiterationto be completed but this avoids them
to remainidle.

In orderfor thatnew schemeo performefficiently, we have to
combinethe lazy copy andthe lure techniques. Remembethat
for thelazy copy mechanisnto work well, we have to ensurethat
thelazy copied” surfacequadtreds lockedto preventit from re-
ceving enegy transfergFigure 7(b)). So, the solutionto avoid a
deadlock whensuchan emitting surfacehasto receve anenegy
transferfrom anotheishootingteration,is to haveit doneonalure.

Our new parallelalgorithmis thusbasedon the enepgy transfer
granularity asthe ETL algorithm.Thetasks consistingn asingle
enegy transfer arecontinuouslyassignedo processesyhosejob
is describedy Algorithm 1.

Algorithm 1 Computinganenegy transfer

if thisis thefirstenepgy transferof the shootingiterationthen
- lock the emitting surface(1)
end if
- make alazy copy of theemittingsurface{/* sinceit is locked*/}
if thereceivingsurfaceis locked {/* asemittingor receiing */ } then
- computethe enepgy transferwith alure
if thereceivingsurfaceis still lockedthen
- addthecomputedureto its list of pendinglures
else {/* thereceving surfacehasbeenunlocled*/}
- megethecomputedure quadtredlocking thereceving surface)
end if
else {/* thereceving surfaceis notlocked*/ }
- lock thereceving surface
- computetheenegy transfer
- megethe pendinglure quadtreesif ary (2)
- unlockthereceving surface
end if
if thisis thelast enegy transferof the shootingiteration then
- melgethe pendinglure quadtreesif ary (3)
- unlocktheemittingsurface
end if

The task of memging the quadtreeof the pendingluresfor a
givensurfaceis hereassignedo the processn chage of unlock-
ing this surface (Algorithm 1: (2) and(3)). During the meiging
operationwhich maybetime consumingprocessesequiringthis
surfaceasa receving surfacefor an enegy transferwill still be
ableto usealure. If it hadbeenassignedo the procesgettingthe
first enepgy transferfor a shootingiterationwith this surfaceasan



emitting surface (Algorithm 1: (1)), this would have delayedthe
following processeassignedo its next enepgy transfers.

To be completewe have to notethata potentialidle time prob-
lem remains,when a new shootingiteration starts,involving an
emitting surfacewhich is currentlylocked asa receving surface
(Algorithm 1: (1)). This couldbeavoidedby introducinga heuris-
tic, makingaprocessisingalure whenit hasto computeanenegy
transfertowardsa receving surfacewhich”is likely to becomean
emittingsurfacein anearfuture”.

5 Reaultsand discussion

5.1 Experimentation context

Our experimentswere performedon the Origin2000describedn
Section2. The operatingsystemrunningon it is the IRIX 6.5.4f
release. The applicationwas compiledwith the MIPSpro 7.2.1
C++ compiler, sincewe still encountersevere compilationprob-
lems with the 7.3 release. We usedthe maximum performance
optimizationflags,selectedoy: CC - n32 - Of ast =I P27. Our
programwas instrumentedo computethe idle time lost on our
codesyndronizationpoints (locks andfinal synchronizatiorbar
rier). We alsousedthe performancenalysistool per f ex, based
ontheR10000hardwareperformanceountersto collectinforma-
tionsaboutthe executions.

Let us now analyzethe new parallelalgorithmpresentedt the
endof Sectiond, appliedon thetwo testsceneslescribedn Sec-
tion 3, andshowvn on Figures3 and5. For the dinnerroomstest
scene,we have chosenalgorithm parametersllowing the whole
memory(350 MB) to residein the main memoryof a singlepro-
cessorin orderto avoid artifactualsequentiaproblems.For sale
of completenesghesi zeLi i t parametewassetto 0.1 meter
ther adi osi t yRat e to 0.01%, andthe desiredratio of remain-
ing total residualenegy to 10 %: the sequentialexecutiontook
about30 hoursto completecreatingl41 184 meshelements.

5.2 Reaults

Figure 9(a) shows the speed-upcurves obtainedon our two test
sceneswith our new parallelalgorithm. As expected,the class-
roomtestscenedoesnot exhibit enoughconcurreny, for our cho-
sengranularity to ensureparallelperformanceandscalability On
the contrary thedinnerroomstestsceneappearso beparticularly
well suitedto parallelcomputationat leastuntil 32 processorsA
superlineaspeed-upntil 16 processorsanevenbeunderlined.

The L1l andL2 cachehits ratesachiezed with both scenesare
very high, sincethey arerespectiely of 94% (L1) and96% (L2),
for any numberof processors.However, theseexcellentresults
have to be mitigatedby the TLB missesproblem. Indeed,on the
sequentiablgorithm,about40% of thetotal executiontime seems
to belost dueto TLB misses.Figure 9(b) shavs the evolution of
thecycles(counter0), the TLB missegcounter23),ascollectedby
theper f ex tool, andthesynchronizatiompointsidle time,asmea-
suredby our instrumentectode, for the dinnerroomstestscene.
Finally, our applicationis not sensibleto false sharing asshovn
by the smallvaluesof counter31 (aboutl10 seconds).

5.3 Discussion

Theresultsobtainedon the dinnerroomstestscenejllustratedon
Figure9, areinterestingalthoughconfusing.On onehand,our hy-

32

Dinner —-—
Salle -+ ]
Ideal -

28 -

24 -

20 -

16

Speed-up

12 +
8L f o

g
/.
al g
/
/

14 8 1216 20 24 28 32 36 40 44 48 52 56 60 64
Processors

(a) Speed-umn theclassroonanddinnerscenes.
300000 ————

,,,,,

250000 - Locks & barriers =~ ]

200000 -

150000

Seconds

100000

50000 |-
1*"'*»7*,.,4‘, B
R e S
g @S
14 8 1216 20 24 28 32 36 40 44 48 52 56 60 64
Processors

(b) Executionanalysisonthedinnerscene.

Figure9: Performancevaluationof our new algorithm.

pothese®n datalocality (Section3) seemto be verified, sincethe
L1 andL2 cachehitsratearevery high, evenif aproblemappears
atthe TLB level. On the otherhand,our new parallelalgorithm
allows anexcellentload balancing sincethe total idle time dueto
synchronizatiompoints slowly increaseswith the numberof pro-
cessorsNeverthelessywe obsenethreetotally differentphasegor
theobtainedparallelperformance.

At the small 16-processorscale,the numberof cycles slowly
increase$rom oneto four processorsjueto the parallelismover
head,andthennearlyremainsconstanuntil 16 processorsAt the
sametime, the numberof TLB misseswhich wasvery high with
oneprocessardecreasefrom 43% with 16 processorsThus,for
a similar numberof cycles,lesstime is spentin virtual addresses
translation.Since,at the sametime, idle time waiting on synchro-
nizationpointsdoesnotincreasewe obtainasuperlineaspeed-up.
Then,atthemoderate32-processoscalethe TLB missesandsyn-
chronizationpointsidle time curvesaremonotonousbut the num-
berof cyclesstartsto "strangely”increase However, this increase
is light enoughso that the speed-upemainsacceptablg26 with
32 processors)Finally, atthelarge 64-processoscale the strange
increaseof the numberof cycles becomesso importantthat the
speed-ups decreasingWe canalsonotethatthe synchronization
pointsidle time curveis now overthe TLB missesone.

A detailedanalysisof the idle time lost on synchronization
pointsshaws thatthe idle time increasds not causedy load bal-
ancingproblems.Thisis ratherdueto congestiorhappeningvhen
accessingritical datastructuressuchasthesortedlist of emitting
surfaceswhich hasto beconstantlyupdatedpr thetasksmanager
distributing the enepgy transfersto the processesThe last point,
for instance could be solved by assigninga setof enepgy transfers
to processesandassociatehis with ataskstealingmechanism.



Froma datalocality point of view, evenif theL1 andL2 cache
hits ratesobtainedby our applicationarevery high, the main bot-
tleneckappeardo bethelack of TLB locality. However, this does
not seemdirectly relatedto our parallel algorithm, but ratherto
operatingsystemand/orhardwareconsiderationsindeed,usingn
processorsillows to have 64n available TLB entries thusgreatly
reducingthe numberof TLB misses.

The remainingtrouble spotis the abnormalincreaseof cycles
encounteredtthe64-processoscale.With thestateof our knowl-
edgesandexisting tuningtools,we arecurrentlynot ableto give a
satisfyinganswer We just canmake someassumptionsve would
like to checkin a nearfuture. First, this may be dueto the large
numberof TLB missessincethey arehandledby anIRIX kernel
routine. Secondour memoryallocationpackagebasedon IRIX
ar ena involvesmary hiddenlocks protectingthem: we plan to
experimentthe next versionof this packagewhich completelyre-
movesthesehiddenlocks.

6 Conclusion and future work

Thenew parallelwaveletradiosityalgorithmintroducedn this pa-
per provesto deliver an optimal load balancing- by minimizing
idle time waiting on locks and synchronizatiorbarriersfor other
tasksto becompleted, atleastfor large scenesxhibiting enough
concurreny. Despitethe communicatiorover-costintroducedby
our optimizing techniquespur applicationstill exhibits excellent
datalocality when executedon the Origin2000,sinceit achieres
veryhigh L1 andL2 cachehits rates.

However, we discoveredthat our applicationsuffers from lack
of TLB locality, mostly dueto thereducechumberof TLB entries
of theR10000processarAn expedientto reduceTLB misseswill
beto uselargerpagesizesthanksto thedpl ace command.This
solutionis suggestedby SGI tuning guides,especiallyin the case
of largedynamicdatabasapplicationswhatour programis notso
far to be. Anyway, we shaved that parallelismalreadyallows to
reduceTLB missespy multiplying thenumberof TLB entries.

The 64-processorscalability of our applicationremainsto be
achiesed. Indeed,we highlightedanimportanttrouble spot, aris-
ing at the 32-processoiscale,which is still unexplainableat the
currentstateof our work. Moreover, load balancingmay have
to be enhancedy optimizing parallel accesseso critical data
structuresandmaybeby reducinggranularityto efficiently handle
smallscenesFinally, it will alsobeinterestingto testourapplica-
tion with muchlargerscenesthatis whenthewholememorydoes
notfit into themainmemoryof asingleprocessarin orderto stress
the Origin2000memorysysteminteractions.
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