
LoadBalancingAnalysisof a
ParallelHierarchicalAlgorithm on theOrigin2000

Xavier Cavin
�

LORIA
�
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Abstract

TheccNUMAarchitecture of theSGIOrigin2000hasbeenshown
to performandscalefor a wide range of scientificandengineer-
ing applications. This paper focuseson a well knowncomputer
graphicshierarchical algorithm- waveletradiosity- whoseparal-
lelizationis madechallengingby its irregular, dynamicandunpre-
dictablecharacteristics.Our previousexperimentations,basedon
a naiveparallelization, showedthat the Origin2000hierarchical
memorystructurewaswell suitedto handlethenatural datalocal-
ity exhibitedby this hierarchical algorithm. However, our crude
load balancingstrategywasclearly insufficientto benefitfromthe
wholeOrigin2000power. We presenthere a fine load balancing
analysisand then proposeseveral enhancements,namely”lazy
copy” and ”lur e”, that greatly reducelocks and synchronization
barriers idle time. Thenew parallel algorithmis experimentedon
a 64 processors Origin2000. Evenif in theory, a communication
over-costhasbeenintroduced,we showthat data locality is still
preserved.Thefinal performanceevaluationshowsa quasiopti-
mal behavior, at leastuntil the ��� -processorscale. Hereafter, a
problematictroublespothasto beidentifiedto explain theperfor-
mancedegradationobservedat the ��� -processorscale.

1 Introduction

Theemergenceof many efficient hierarchicalalgorithmsfor solv-
ing very large numericalproblemsin scientific and engineering
computinghasbroughtouttheneedof dedicatedparallelhierarchi-
cal architectures[5]. Since,severalresearchprojectshave focused
their work on the design,the implementationand the evaluation
of hardwarecache-coherentsharedaddressspacemultiprocessors:
amongthem,theMIT alewife machine[1], or theStanfordDASH
prototype[14]. Thesestudieshave led to commercialrealizations,
suchastheSGIOrigin2000[12], whichis ccNUMA machinewith
ascalabledistributedsharedmemory(DSM) architecture.TheOri-
gin2000hasbeenshown to deliver goodperformanceby a recent
evaluationpaper[11], basedon a wide rangeof kernelsandappli-
cationsfrom theSPLASH-2suite.

Waveletradiosity[10] is anefficient computergraphicsmethod
to computethe inter-reflectionsof light in Lambertian(i.e. dif-
fuse)environments.The radiosity- power perunit area � 	�

����� -
onagivensurfaceis definedasthelight energy leaving thesurface
perunit area,andis governedby anintegral equationinvolving all
othersurfacesof the input scene.This equationis solvedusinga
�
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finite elementapproach,which computesanapproximationof the
radiosity function asa finite linear sumof wavelet functionsde-
fined over ��� supports. The parallelizationof wavelet radiosity
is a key issuein order to bypassits hugecomputationtime and
memoryrequirements,andto computesimulationsof complex en-
vironmentsin a reasonabletime. However, aswith all hierarchical
N-Body methods,this algorithm hashighly irregular and unpre-
dictabledataaccesspatternsthatmake its parallelizationchalleng-
ing [16].

As suggestedby [15] anddemonstratedby a recentpaper[9],
distributed architectures,and their associatedmessagepassing
paradigm,are definitely not well suitedfor parallel hierarchical
radiosity algorithms. On the contrary, the sharedaddressspace,
andthehierarchicalmemorystructure,providedby theccNUMA
architectureappearto be particularlywell adaptedto handletheir
intensive communicationandsynchronizationneeds.The exper-
iments we performedwith our first naive parallelization[4] on
theOrigin2000showedthatanexcellentdatalocality couldbeaf-
fordedwith minimalefforts[3]. However, thecrudeloadbalancing
implied by this naive parallelizationdid not allow usto getanop-
timal parallel performance.So now, what are the key problems
involved in our simple load balancingstrategy, andhow can we
solve them? Then, doesthe new parallel algorithm still present
gooddatalocality?And mostof all, doesit performbetter?

We startin Section2 by briefly describingtheccNUMA archi-
tectureof theOrigin2000,focusingon themainfeaturesaffecting
performance.In Section3, werecallourpreviouswork on thepar-
allelizationof the wavelet radiosityalgorithm,andshow how we
couldobtainaverygooddatalocality. Thenin Section4, wehigh-
light the load balancingproblemsthat impedeperformance,and
proposesolutionsreducinglocksandsynchronizationbarriers.In
Section5, we presentanddiscussthe resultsof our enhancedal-
gorithm,showing thatdespitetheintroducedcommunicationsand
supplementarywork, datalocality is still preserved. We find that
our new parallelalgorithmcanafford superlinearspeed-up,at the
small ��� -processorscale,andacceptablespeed-upat themoderate
��� -processorscale. However, a troublespot remainsto be iden-
tified to explain the ��� -processorscaleperformancedegradation.
Finally, conclusionandfuturework arepresentedin Section6.

2 Understanding ccNUMA architecture

In order to fully benefitfrom a computersystemperformance,it
is really importantto understandthe underlyingarchitecture.As
shown by Figure 1(a), the SGI Origin2000 is a scalablemulti-
processor(up to ������� processors)with distributedsharedmemory
(DSM), basedon theSN0(ScalableNode0) architecture[7]. The
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basicbuilding block is the nodeboard,composedof two MIPS
R10000processors,eachwith separate��� KB first level (L1) in-
structionanddatacacheson thechip with ��� -bytecacheline, and
a unified (instructionand data), commonly � MB, two-way set
associative secondlevel (L2) off-chip cachewith �
��� -byte cache
line. Eachnodecontains��� MB to � GB of main memory(and
associateddirectorymemory),accessiblethrougha customcircuit
called the hub. Large SN0 systemsare built by connectingthe
nodestogethervia ascalableinterconnectionnetwork. Connecting
two nodesis doneby connectingtheir hubchipsthrougha router,
which canbeitself connectedup to six hubsor otherrouters.Fig-
ure1(b) shows thetopologyof the ��� processorsOrigin2000used
for this paper:eachnodehas ����� MB of mainmemoryfor a total
of ��� GB.
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HubMain memory &
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(a)Block diagram.
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(b) Topologyof a 64processorsmachine.

Figure1: ScalableDSM Origin2000[7].

The SN0 architectureallows the memoryto be physicallydis-
tributed,while makingall memoryequallyaccessiblefrom a soft-
warepoint of view, in a ccNUMA approach.NUMA standsfor
nonuniform memoryaccess.Indeed,the time neededfor access-
ing memoryclearly dependson its location in the memoryhier-
archy (seeTable1). A given processonly operateson datathat
areresidentin its cache:aslong asthe memoryis presentin the
cache,accesstimesarevery short;on thecontrary, a delayoccurs
while a copy of the datais fetchedfrom memoryinto the cache.
Thetwo processesof agivennodehavequickaccessthroughtheir
hubto their local memory. Accessingremotememorythroughan
additionalhubaddsanextra incrementof time,asdoeseachrouter
the datamust travel through. Moreover, as memory is manipu-

latedthroughcopiesin thecaches,it mayhappenthatseveralpro-
cesseshave a cachedcopy of the samelocationat the sametime.
Thus,thefirst processmodifyingthatdatamustinstantlyinvalidate
all othercachedcopiesof thelocation,preventingotherprocesses
from usingthis ”staledata”.This is theissuecachecoherence(cc),
which is managedby thehardwarein theSN0architecturewith a
directory-basedcachescoherency scheme,asin [13].

Memorylevel Readlatency

L1 cache ����� ns
L2 cache �����  ns

Localmemory !��"! ns
Hub to hub(samerouter)  $#
% ns

Thenfor eachhop &'�)($( ns

Table1: Loadlatenciesfor thedifferentmemorylevels[7].

Obviously, if thesharedmemoryis seenasacontiguousrangeof
virtual memoryaddresses,thephysicalmemoryis actuallydivided
into pages,which aredistributedall over thesystem.The default
pagesizeis of ��� KB, but it canbechangedwith thedplace util-
ity. For every memoryaccess,the operatingsystemhasto trans-
late the virtual addressinto the physicaladdressrequiredby the
hardware.A hardwarecachemechanism,thetranslationlookaside
buffer (TLB), keepsthe ��� mostrecentlyusedpageaddresses,al-
lowing aninstantvirtual-to-physicaltranslationfor these��� pages.
Thisallowsa � MB memoryspace(for thedefaultpagesize)to be
addressedwithout translationpenalty. Programsusinglarger vir-
tual memorymayreferto a virtual addresswhich is not cachedin
theTLB. In thesecase(TLB miss),the translationis doneby the
operatingsystem,in thekernelmode:thememoryreadlatency is
thenof approximately�$�'����� ns,in the(common)casewherethe
pagehasnot beenswappedto thedisk.

As a conclusion,the SN0 architectureof the Origin2000pro-
videsboththeprogrammingsimplicity of a sharedmemoryarchi-
tectureand the scalability of a distributed memoryarchitecture,
by eliminatingthefinite bandwidthof a commonbus. For our ���
processorsmachine,the numberof routerhops1 is at the mostof
five andon averageof �+* ,-� , thusgiving an averagereadlatency
of ��,�� ns(with a TLB hit). However, in orderto getoptimalper-
formance,it seemsnecessaryfor programsto usethecacheseffec-
tively, that is the greatmajority of dataaccessesshall besatisfied
from thecaches,thusmakingtheaccesstime to memory(local or
remote)lessimportant.This canbeachievedby applyingthetwo
straightforwardprinciplesof datalocality:

. spatial locality: a programshoulduseevery word of every
cacheline ( �$��� bytes) it touches,to avoid the time wasted
copying theunusedpartsof theline;

. temporal locality: a programshouldusea cacheline inten-
sively, andthennotreturnto it later, becauseit mayhavebeen
replacedby otherdata.

At least,a processshouldusethememorythat is closestto the
processorit runson. Fortunately, the SN0 architectureprovides
both hardwareandsoftwarefeaturesfor improving performance,
including supportfor dynamicpagemigration (in order to have
datapagesresideprimarily in local memory)andprefetching(so
memory-fetchcanbeoverlappedwith execution).

1Thenumberof routersthatcouldhandlea requestfor memorydata.
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3 Early parallel wavelet radiosity

Our parallelizationwork takes place inside the CANDELA plat-
form, which is a researchproject designedto provide a flexible
architecturefor testingandimplementingnew radiosityandradi-
ancealgorithms[17]. TheCANDELA softwareis basedon theSGI
OpenInventorlibrary, andconsistsof about����� C++ classes.

We first briefly describe,asit is implementedinsideCANDELA,
the sequentialalgorithmwe have chosento parallelize.Then,we
highlight the two key, but conflicting, aspectsto facewhen par-
allelizing a hierarchicalradiosity algorithm- load balancingand
datalocality - andwe illustratethem,basedon our sequentialim-
plementation.Finally, wepresentour two earlyparallelalgorithms
andtheperformanceresultswecouldobtainon theOrigin2000.

3.1 Sequential algorithm

Our purposehereis not to enterinto theunderlyingdetailsof our
sequentialimplementation,but ratherto highlight the termsthat
will be importantfor our analysis. A moredetailedpresentation
canbefoundin [4].

Basically, thesequentialalgorithmis basedon theSouthwellit-
erativemethod[6], andit proceedsasfollows.A subsetof theinput
scenesurfaceshave initial energy, eitherself-energy, or dueto di-
rect illumination by point light sources:they arefirst insertedinto
a sortedlist of surfaceswith energy to emit (or residualenergy),
sortedby decreasingenergy. Then,successive shootingiterations
areperformedto updatethe scenesurfacesradiosityfunction. At
the beginning of eachshootingiteration, the first surface, /10 , of
thesortedlist (i.e. thesurfacewith themostresidualenergy) is re-
movedfrom thelist. Its residualenergy is successively propagated
to every othervisible surface, /32 , of the scene:for eachinterac-
tion betweenthe emittingsurface / 0 anda receivingsurface /32 ,
anenergy transferis computedto updatetheradiosityfunctionof
/32 . A partof theenergy receivedby /12 is absorbedandtheother
is reflected,andthusaddedto theresidualenergy of / 2 , whosepo-
sition in thesortedlist hasto beupdatedconsequently. A shooting
iterationis completedafterall energy transfersbetween/10 andits
receiving surfaces/ 2 arecompleted.Finally, the residualenergy
of /10 is reseted,andthenext shootingiterationbegins,unlessthe
desiredconvergencerate2 hasbeenreached.

In order to optimize the energy transfer for a given surface-
surfaceinteraction,we usea multi-level representationof the ra-
diosity function over the surfaces.Eachsurfaceis representedas
a quadtreeof meshelements, over which the radiosityfunction is
projectedontowaveletbasisfunctions.Figure2 showsaninterac-
tion betweena triangleanda parallelogram,andtheir associated
hierarchicaldatastructures.Theenergy transferstartsat thehigher
level of the quadtrees.An oracle function decidesif the trans-
fer canbedonebetweenthetwo currentmeshelements,basedon
an evaluationof the committederror. If this error is too high, a
lower level of one of the two surfaces(usually the biggestone)
mustbeused:theenergy transferis recursively continuedbetween
thecurrentmeshelementof thenonchosensurfaceandeachof the
lower-levelmeshelements,thatmayhaveto becreated,of thecho-
senone. Energy canthusbe transferedbetweenany levelsof the
quadtrees,asshown by Figure2. Whentheradiosityfunctionhas
to beupdatedover thewholesurfacequadtree,a push/pullmecha-
nismis usedto transmittheenergy betweenits differentlevels.

2Ratioof total remainingresidualenergy over total initial residualenergy.

1

2

Oracle test between the higher levels

Radiosity transfer

Figure2: Hierarchicalenergy transfer.

The oracle function involves several user-definedparameters,
that allow to control the numberof meshelementssubdivisions.
For instance,the limit sizeof a meshelement(sizeLimit), or
theminimalratioof broughtenergyoverthealreadypresentenergy
(radiosityRate), underwhichnosubdivisionis done.Finally,
the oraclefunction requiresa greatnumberof visibility compu-
tationsto estimatethe error due to the energy transfer: they are
optimizedusinga binary spacepartition (BSP)of the scene,but
couldalsobeacceleratedusingavailablegraphicshardware.

3.2 Overview of parallelization challenges

Load balancing

Let us considerthe classroommodel provided by PeterShirley,
whichis aradiosityreferencetestscene.Theinitial model,showed
onFigure3(a),is composedof �4�$5�� initial surfacesandfour emit-
ting surfaceson the ceiling. Figures3(b) and3(c) show images
of theradiositycomputationresult.Thethin shadowson thefloor
show theprecisionof thesolution,andthusthefinemeshelements
decompositiondoneon thelargeinitial floor surface.

(a) Initial model.

(b) Final result(detail). (c) Final result(detail).

Figure3: Theclassroomtestscene.
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Thesequentialexecutiontook about ,6����� secondsto compute
the 5���� shootingiterations,for aremainingratioof residualenergy
to shootof �87 . The final solutionis composedof ���9�+��� mesh
elements,including �:�;����� final leafs.Figure4(a)shows boththe
individualtimeneededto computeeachshootingiteration(vertical
boxes),and the cumulatedtime. The correspondingdecreaseof
total residualenergy is shown on Figure4(b), whereeachvertical
box representstheresidualenergy of thecurrentemittingsurface.
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Figure4: Sequentialexperiment(classroomscene).

Althoughtheclassroomtestsceneis relatively simple,thesetwo
Figuresillustratetheirregularandunpredictablecharacteristicsof
thewaveletradiosityalgorithm. Indeed,thetenfirst shootingiter-
ationsareresponsiblefor about ���=7 of the total residualenergy
decreaseand ���67 of thetotal executiontime. Thefirst four ones
concernthefour ceiling surfacesillumination, while themostim-
portantinter-reflectionsarehandledby thenext six ones.Then,the
desiredconvergenceis slowly reachedwith all theremainingshort
(between� and ��� secondseach),of low residualenergy, ones.

As we can seeon Figure 4, the computationtime of a given
shootingiterationis far from beingproportionalto thecorrespond-
ing residualenergy. Worst, a shooting iteration (for instance,
the ��>@? ) may take longer than anotherone (the ��>@? ) having less
residualenergy. As we will seein thenext Section,thesamekind
of irregularitycanbefoundinsideashootingiteration.

Finally, theoraclefunctionparametersmaygreatlyinfluencethe
computationtimeof shootingiterations.For instance,thefour ceil-
ing surfaceshaveexactly thesameinitial residualenergy, but their
respective shootingiterationstake lessandlesstime! This is due
to theradiosityRate parameter, heresetto 5;7 . Indeed,these
shootingiterationsconcernthesamereceiving surfaces,which ac-
cumulatemoreand moreenergy. Thus, the energy transfersare
donequickeron higherandhigherlevelsof thequadtrees.

Data locality

As explainedin Section2, datalocality is essentialin orderto sus-
tain high parallelperformance,especiallyon theOrigin2000:it is
necessarythat the applicationachievesa very high ratio of cache
hits atevery level (L1, L2, TLB) of thememoryhierarchy.

Let usconsideranotherreferenceradiositytestscene,alsopro-
videdby PeterShirley, andshown onFigure5. Thissceneconsists
of ��� x ��� dinnerrooms,andcontains�A�B����� initial surfaces,among
which ����� ceilingemittingsurfaces.Largesceneslike thisoneare
problematicfrom a datalocality point of view, for two main rea-
sons. First, every new shootingiterationmay involve totally dif-
ferentmemoryaccessesfrom the previousone,dependingon the
locationof thecorrespondingemittingsurfacesin thescene.This
is evenmoreproblematicwith the dynamiccreationof meshele-
ments. Indeed,the meshelementsof a given surfacemight have
beencreatedby differentshootingiterations.Second,the visibil-
ity computationsrequiredby the oraclefunctionmay involve any
surfaceof thescene.

As a consequence,any partof theconstantlyevolving memory
maybeaccessedat any timeduringthewholecomputation.

Figure5: Thedinnerroomstestscene.

3.3 Parallel algorithms

An efficientapproachto getanoptimaldatalocality is to distribute
thedatabaseamongthedifferentlocal memories,asin a message-
passingscheme,thusrestrictingthe processesto accessa limited
part of the whole memory. For instance,[2] usesa spatialsub-
division of the input sceneinto sub-environments,which aredis-
tributedamongprocesses:theseonesonly computeenergy trans-
fersfor thesurfacesthey areassignedto, andenergy exchangesbe-
tweensub-environmentsareperformedthroughvirtual interfaces.

Unfortunately, if this kind of techniquecanbesuccessfullyap-
plied to classicalradiosity algorithms, it becomesrather ineffi-
cientfor hierarchicalradiosityones,evenwith elaborateddynamic
grouppartitioningmethods[8]. Then,the alternateway is to ex-
ploit thenaturaldatalocality exhibitedby thesealgorithmsthrough
thememoryhierarchyof DSM computers,assuggestedin [15].

Granularity choice

Our wavelet radiosity algorithm presentsthree levels of paral-
lelism: acrossshootingiterations,acrossenergy transfers(between
inputsurfaces),andacrossmeshelements.Choosingthegranular-
ity for the parallelizationis a difficult task, sinceit may greatly
influencebothloadbalancinganddatalocality.
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The finest granularity (acrossmeshelements)allows an opti-
mal load balancing,

C
as in [16]. However, sincea meshelement

maybeupdatedby severalprocessesat thesametime, it hasto be
lockedfor exclusiveaccess:thisapproachhasto bekeptfor radios-
ity simulationsof small scenes,leadingto a moderatenumberof
meshelements.We sohave chosento focuson thetwo remaining
coarsergranularities(acrossshootingiterationsandacrossenergy
transfers)to implementthetwo following parallelalgorithms.

ETL and SIL algorithms

Energy transferlevel (ETL): this is historicallythefirst parallelal-
gorithm we have implemented.For simplicity reasons,we have
chosento performtheshootingiterationsoneaftertheother, in ex-
actly the sameorderas in the sequentialalgorithm. For a given
shooting iteration, all the energy transfers,for the correspond-
ing emittingsurface,aredistributedfor parallelprocessing.Each
processstartsby making an independentcopy of the complete
quadtreeof theemittingsurface,sothatfurthermeshelementsde-
compositionsmay be doneon it without accessconflicts. Then,
it getsa receiving surface from a centralizedlist and computes
the correspondingenergy transfer. The copy of the emitting sur-
facequadtreeis reusedfor all assignedreceiving surfaces,until
no oneremainsin the list. At that point, the processwaits on a
synchronizationbarrier for all other processesto completetheir
energy transfer, before switching to the next shootingiteration.
Synchronizationbarriersseparatingsuccessive shootingiterations
allow processesanexclusiveaccessto thereceiving surfaces,with-
out any additionallock.

Shootingiteration level (SIL): in this algorithm, eachprocess
is now assignedto a completeshootingiteration. As in the ETL
algorithm,a given processstartsby makingan independentcopy
of the quadtreeof theemittingsurfaceit hasbeenassignedto, so
that this surfaceis still ableto receive energy from otheremitting
surfaces,asshown on Figure7(a). Then,it successively computes
theenergy transfersfor all its receiving surfaces,beforeit requests
the next shootingiteration. Here,sincemany shootingiterations
areperformedat the sametime, a surfaceis likely to simultane-
ouslyreceive energy from severalemittingsurfaces,andsohasto
belockedfor exclusiveaccess.

First results

Thesetwo parallelalgorithmshave beenimplementedusingIRIX
sproc’ed processes.Sincemany meshelementssubdivisionsoc-
cur at thesametime duringthecomputations,many memoryallo-
cationshave to be donein parallel. We thushave overloadedthe
standardmalloc, free, realloc andcalloc functions,in
orderto providea transparent,contentionfree,memoryallocation
package.Basically, anarena is allocatedandassignedto each
process,sothatit canfreely allocateits neededmemory.

Our first experimentations[4, 3] on a ��� processorsOrigin2000
showed encouragingresults,especiallyfrom a datalocality point
of view. Indeed,wecouldobtaincachehits ratesof approximately
,-�87 for the L1 cacheand ,��D7 for the L2 cache. This behav-
ior canbe explainedby the two following kinds of datalocality,
aspresentedin Section2. First,our applicationexhibits goodspa-
tial datalocality thanksto thehierarchicalquadtreedatastructures,
combinedwith our memoryallocationmechanism.Indeed,for a
given surface,a large numberof meshelementsdecompositions
aredoneby the sameprocess,andarethusallocatedon contigu-

ousmemorypartsof thesamearena. Second,thetemporaldata
locality is alsoexcellent,since,for a given energy transfer, both
thequadtreedatastructuresof thetwo interactingsurfaces,andthe
BSPcellsusedfor visibility computations,arereusedmany times.
To summarize,theworking setfor a givenenergy transferis defi-
nitely well adaptedto thelargecachesof theOrigin2000.

On theotherside,loadbalancing,andconsequentlyscalability,
werenot really satisfying.Indeed,we evendid not obtaina linear
speed-upatthesmall ��� -processorscale,andtheparallelefficiency
at themoderate��� -processorscalewaslimited to about 5�� - ���E7 .
Thesemitigatedresultsaremainly dueto our naive parallelalgo-
rithms,aswe shallseein thenext Section.

4 Enhancing load balancing

Wefirst presentin thisSectionafineloadbalancinganalysisof the
implementationof thetwo parallelalgorithms(ETL andSIL) pre-
sentedin Section3, highlighting both advantagesanddrawbacks
in termsof scalability. Then,we proposetwo enhancementsthat
partially resolved the raisedproblems. Finally, in order to bene-
fit both from the advantagesof the two algorithms,andfrom our
introducedtechniques,we presenta brand-new parallelalgorithm.

In orderto illustrateouranalysis,wewill usetasksdiagramrep-
resentingthe executionof our differentalgorithms,on the class-
roomtestsceneof Figure3. For instance,Figure6(a)shows parts
of the tasksdiagramfor the sequentialalgorithm: eachfilled box
representsasingleenergy transfer, its lengthbeingits computation
time,andits colordeterminingtheemittingsurface.A setof boxes
of thesamecolorcorrespondsto acompleteshootingiteration,and
thusto a singleverticalboxon Figure4(a).

Tasksdiagramsallow to give a betterunderstandingof the be-
havior of our waveletradiosityalgorithm,especiallyat theenergy
transferlevel. At the very beginning of the algorithm, emitting
surfaceshave a large residualenergy (Figure4(b)), andreceiving
surfacesarefreeof meshelementssubdivision. So,thefirst energy
transfersarevery irregularandunpredictablein termof computa-
tion times. On the classroomtestscene(Figure6(a)), the energy
transferbetweena ceiling emittingsurfaceandthelargefloor will
take many more time thanwith any other receiving surface,due
to the many occludingchairsand the table. As the computation
proceeds,emittingsurfaceshave lessandlessresidualenergy, and
receiving surfacesaccumulatemoreandmoreenergy on their nu-
merousmeshelements. Thus, the computationtimes of energy
transfersbecomeshorterandshorter, andmorehomogeneous.

Let us now seehow thesetaskscanbe distributed for parallel
processing,while taking carefor their precedingorder. Indeed,
somesurfacescanonly transfertheir energy afterhaving received
it from othersurfaces.Onthecontrary, for agivenemittingsurface,
theorderof receiving surfacesprocessingis not important.

4.1 Early algorithms analysis

Energy transfer level (ETL)

Partsof the tasksdiagramfor the ETL algorithmexecutionwith
seven processeson the classroomtest sceneare shown on Fig-
ure 6(b) and6(c): hatched”Sync” boxescorrespondto idle time
waiting on the synchronizationbarrierbetweensuccessive shoot-
ing iterations,and”Copy” boxesrepresentthetimeneededto make
acopy of theemittingsurfacequadtreebeforethefirstenergytrans-
fer. Thetiled boxescorrespondto asideeffectdueto theuseof the
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Figure6: Tasksdiagramfor thesequentialandearlyparallelalgorithms(classroomscene).

OpenInventorlibrary: ashortpartright at thestartof thecopy has
to be doneinsidea critical section,makingprocessesbegin their
copy oneaftertheother.

Synchronizationbarriersareparticularlyproblematicat thebe-
ginning of the algorithm (Figure 6(b)). Indeed, inside a given
shootingiteration, the energy transfersare likely to be very dif-
ferent in length, and are so quite impossibleto be equally dis-
tributed. A few energy transfersaretime consumingwhile others
areshorterandquickly handledby remainingprocesses.Typically,
on theclassroomtestscene,for eachceiling emittingsurface,the
first energy transferto the floor surfacemay take morethanhalf
total shootingiterationcomputationtime, due to the many shad-
owsto catch.This is obviouslymoreproblematicasthenumberof
processesincreases:the moreprocessesthereare,the soonerthe
remainingof theenergy transfersis completed,andthemoretime
is lost on the synchronizationbarrier. For a given shootingitera-
tion, if FHGJI@KMLN�O��*P* QR�TS are the respective computationtimes for
theenergy transfersto its Q receiving surfaces,thenthemaximum

speed-upis boundedby
UWVXOY-Z�[ X\^]`_ VXPY�Z [ X , andis independentof thenum-

berof processes.Fortunately, aslongasthecomputationproceeds,
energy transfersbecomeshorterandcanbebetterdistributed,thus
reducingsynchronizationidle time.

Copying theemittingsurfacequadtreeis not problematicat the
beginningof the algorithm. Indeed,surfacesarenot yet fully de-
composedinto meshelements,andcopying is donequickly. On
the contrary, the more the algorithm proceeds,the more surface
quadtreescontainmeshelements,andthe moreduplicationtakes
time. At thesametime,energy transfercomputationtimesbecome

shorter. Then,copying theemittingquadtreemaytake longerthan
computingall theenergy transfers!This is exactlywhathappensat
theendof thecomputationon our classroomtestscene,whenthe
very subdividedfloor hasto emit a very few residualenergy (Fig-
ure 6(c)): the first threeprocessescompletequickly, but anyway
slowerthanthesequentialversion,theshortenergy transfers,while
thefour remainingonesarestill copying theemittingquadtree.In
thiscase,usingmoreprocesseswouldonly grow theshootingiter-
ationtotal executiontime. Moreover, only thehigherlevelsof the
emittingquadtreeareusefulat theendof computation3, soa huge
partof thecopy time is wasted(Figure7(a)).

Shooting iteration level (SIL)

TheSIL algorithmpartially resolvestheETL algorithmproblems,
but unfortunatelyintroducesnew ones.Indeed,asin theETL algo-
rithm, theemittingsurfacequadtreefor a givenshootingiteration
hasto beduplicated,but thecopy is only doneonceby theprocess
thathandlesit, andis reusedfor all receiving surfaces.Thisallows
to avoid theproblemsof Figure6(c)dueto theOpenInventorlock,
but it still remainsunsatisfactory when the duplicationis longer
thanthecomputationof all theenergy transfers.

Moreover, sinceseveralshootingiterationsarehandledin paral-
lel, thereis no needfor synchronizationbarrier, exceptat theend,
whenthe desiredconvergencehasbeenreached.However, since
any energy transfermay be performedat any time, caremustbe
takenfor accessingemittingandreceiving surfaces.First, a given

3This is dueto theoraclefunction: emittingsurfaceshave lessresidualenergy
while receiving surfaceshavemoreaccumulatedenergy.
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surfacecannot receive several energy transfersat the sametime,
andso mustbe protectedby a lock by the processthat needsit.
Second,whena processgetsa new shootingiteration, the corre-
spondingemitting surfacemay be locked as a receiving surface
(previouscase):it sohasto wait for thisenergy transferto becom-
pleted,thenlocks the surfaceto make an independentcopy of its
quadtree,and releasesthe lock, so that the surfacecan continue
to receive energy transfers,as shown on Figure 7(a). Note here
thatduplicatingtheemittingsurfacequadtreeis essentialto avoid
a deadlock betweentwo processescomputingenergy transfersfor
two symmetricalinteractions.

Figure6(d) presentsthe tasksdiagramfor the beginningof the
SIL algorithmexecutionon theclassroomtestscene,with six pro-
cessors:hatched”Lock” boxes representthe time waiting on a
lockedsurfacefor theassociatedenergy transferto becompleted.
We canseethat this testsceneis not particularlywell adaptedto
this parallelalgorithm.Indeed,only thefour ceiling surfaceshave
residualenergy at thebeginningof thealgorithm,so thefour first
processesdealwith oneceilingsurfaceshootingiterationeach,and
theremainingprocesseswait for new shootingiterationsto becre-
ated(”Wait for job...” boxes).

Thefirst energy transferfor eachemittingceiling surfaceshoot-
ing iteration concernsthe floor surface: threeprocesseshave to
wait for the remainingone,who got the lock first, to completeits
computation.Oncethis first energy transferis computed,thefloor
surfaceis unlocked, and anotherprocesscan perform its energy
transfer. Sincethe floor surfacenow have residualenergy, a new
shootingiterationhasbeencreatedandassignedto a waiting pro-
cess. This process,however, cannot start its shootingiteration,
sincethe floor surfaceis currently locked asa receiving surface.
Obviously, this example illustratesthe worst case,where many
processesarewaiting for thesamesurfaceinvolving timeconsum-
ing energy transfers,but similarcaseshappenwith standard,larger
models. As the computationproceeds,energy transfercomputa-
tion timesdecrease,but locking problemsstill remain,especially
asthenumberof processesis growing.

The last drawback of the SIL algorithm is that it converges
slower than the sequentialand the ETL algorithm, especiallyas
the numberof processesincreases:supplementaryshootingiter-
ationsmay be requiredfor the sameresult! For instance,on the
classroomtestscene,the first shootingiterationfor the floor sur-
faceis performedwith lessresidualenergy asit would have if the
four ceiling surfacesshootingiterationshadbeencompleted.

4.2 Lazy copy

Copying theemittingsurfacequadtreeappearsto beacritical point
in theETL andSIL algorithms.This is dueto thefollowing:

. thestartof thecopy mustbedoneinsideacritical section(not
really problematicfor theSIL algorithm);

. emitting surfacequadtreescontainmoreandmoremeshel-
ements,thus increasingcopy time, while shootingiteration
computationtimesdecrease;

. throughtheoraclefunction,only thehigherlevelsof thedu-
plicatedquadtreeremainusefulasthecomputationproceeds.

The last two points,illustratedby Figure7(a),naturallyleadto
the idea of using a light copy of the emitting surfacequadtree.
For building this so called ”lazy copy”, we no longer duplicate

the wholequadtree,but only its higherlevel (the root), keepinga
referenceto the original quadtree.Then,whenthe processneeds
a lower level of the quadtree,it copiesthe information from the
original quadtree,if it exists, or createsit on its lazy copy. Low
levels of the quadtreeareonly copiedwhennecessary, asshown
by Figure 7(b). Furthersubdivisionsdoneon the lazy copy are
not copiedbackto theoriginal quadtree,sincethey do not contain
supplementaryenergy information.

Emitting surface
(can receive energy)

Receiving surface

Copy

Independant copy

(a)Completecopy.

Emitting surface 
(locked)

Receiving surface

Lazy copy

Lazy copy
Reference

(b) Lazycopy.

Figure7: Energy transferusinga copy of emittingsurface:in this
example,only two levelsof theduplicatedquadtreeareuseful.

In order for that mechanismto work well, we have to ensure
thattheoriginal surfacequadtreewill not receiveenergy while the
shootingiterationis beingcomputed.This is not problematicfor
the ETL algorithm,sincethe emitting surfacewill never be a re-
ceiving surfaceinside a given shootingiteration. Unfortunately,
lazy copy cannot be applied”as is” to the SIL algorithm,since
locking the original quadtreewould causedeadlocks. However,
usinglazy copy allows to dramaticallyreducethe ETL algorithm
executiontime, mostlyat theendof the computation.Obviously,
the morethe emitting surfaceis subdivided, the morethe gain is
important,aswith thefloor surfaceof theclassroomtestscene.

4.3 Lures

Thekey problemappearingin theSIL algorithmis the restrictive
accessto thereceiving surfaces(Figure6(d)). Indeed,a lot of time
maybewastedidling whenmany processestry to computeenergy
transferstowardsthesamereceiving surface,especiallywhenthese
aretime consuming.This is thecasefor thefloor of theclassroom
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test scene,when it hasto receive energy transfersfrom the four
ceiling emittinga surfaces.

We sohadto find a mechanismso thata processno longerre-
mainsidle when it hasto wait for a receiving surfaceto be un-
locked: the basicidea is to have the processperform its energy
transferwith adisjointcopy of thereceivingsurface,namelya lure.
Oncetheenergy transferis completed,thecomputedlurequadtree
andtheoriginal receiving surfacequadtreemustbemerged.

Copying thereceiving surfaceto build thelure couldleadto the
sameproblemsaswhencopying anemittingsurface. Indeed,du-
plicatingthewholereceiving surfacequadtreemaysometimestake
longerthanwaitingfor theotherprocessesto completetheirenergy
transfer. Fortunately, we do not hereneedthesamekind of infor-
mations. We actuallydo not needthe surfacequadtreeinforma-
tions: only the”surfaceinformations”areduplicated,anda brand
new quadtreeis build to computetheenergy transfer(Figure8(a)).

Whena processhascompletedthe energy transferwith a lure,
the original surfacethe lure wasbuilt from may eitherbe locked
or not. If it is no longerlocked,theprocesslocksit andcaneasily
performthemergingoperation,asdoneonFigure8(b). In theother
case,the processshall not wait for the surfaceto be unlocked,or
all beneficewould be lost. It thusappendsits lure into a list of
”pending” luresassociatedwith theoriginal surface.

We now haveto determinehow andwhenthependinglureswill
bemergedwith their original surface.This taskcanbeassignedto
the next processcomputinga shootingiterationwith this surface
asanemittingsurface.Another, moreefficient solution,is to have
it doneby theprocesscurrentlyhaving the lock, onceit hascom-
pletedits energy transfer, allowing themergingwork to bedivided
amongprocesses.

Emitting surface

Receiving surface (locked)

Lure

Lure

Emitting surface

(a)Energy transferwith a lure.
Emitting surface

Receiving surface (unlocked) Lure

Emitting surface

Merge

Merged surface

(b) Merging a lure.

Figure8: Thelure mechanism.

To be complete,we have to notethat the lure mechanismmay
introduceanothersupplementarywork, dependingon the oracle
functionparameters.Indeed,sincealuresurfaceis consideredwith
anew quadtreeemptyof energy, theradiosityRate parameter,
taking into accountthe accumulatedenergy, cannot play its role,
asif theenergy transferwascomputedwith theoriginal surface.

4.4 A new parallel algorithm

On one hand, the ETL algorithm performsthe samenumberof
shootingiterationsas the sequentialalgorithm and can be opti-
mized with the lazy copy mechanism,but suffers from synchro-
nizationbarriersidle timeandcannot behelpedby thelure mech-
anism.On theotherhand,theSIL algorithmdoesnot suffer from
synchronizationbarriersandmay have locks idle time greatlyre-
ducedthanksto the lure mechanism,but it hasto computemore
shootingiterationsfor a sameconvergenceand can not directly
benefitfrom thelazycopy mechanism.

Then, the principle of our new parallelalgorithmis to contin-
uouslyprocessthe energy transfersof the successive shootingit-
erations”in nearthe sameorder” as in the sequentialalgorithm.
Actually, when all energy transfersof a given shootingiteration
have beendistributed,andevenif somearenot yet completed,the
non-busyprocessesstartcomputinga new shootingiteration,with
the surfacecurrently in the first placeof the sortedlist. So, this
maynot bethesameemittingsurfaceasif they hadwaitedfor the
previousshootingiterationto be completed,but this avoids them
to remainidle.

In orderfor thatnew schemeto performefficiently, we have to
combinethe lazy copy and the lure techniques.Rememberthat
for thelazy copy mechanismto work well, we have to ensurethat
the”lazy copied”surfacequadtreeis lockedto preventit from re-
ceiving energy transfers(Figure7(b)). So, thesolutionto avoid a
deadlock,whensuchanemittingsurfacehasto receive anenergy
transferfrom anothershootingiteration,is to haveit doneonalure.

Our new parallelalgorithmis thusbasedon theenergy transfer
granularity, astheETL algorithm.Thetasks,consistingin asingle
energy transfer, arecontinuouslyassignedto processes,whosejob
is describedby Algorithm 1.

Algorithm 1 Computinganenergy transfer.
if this is thefirst energy transferof theshootingiteration then

- lock theemittingsurface(1)
end if
- make a lazycopy of theemittingsurface b /* sinceit is locked*/ c
if thereceivingsurfaceis locked b /* asemittingor receiving */ c then

- computetheenergy transferwith a lure
if thereceivingsurfaceis still locked then

- addthecomputedlure to its list of pendinglures
else b /* thereceiving surfacehasbeenunlocked*/ c

- mergethecomputedlurequadtree(lockingthereceiving surface)
end if

else b /* thereceiving surfaceis not locked*/ c
- lock thereceiving surface
- computetheenergy transfer
- mergethependinglure quadtrees,if any (2)
- unlockthereceiving surface

end if
if this is thelast energy transferof theshootingiteration then

- mergethependinglure quadtrees,if any (3)
- unlocktheemittingsurface

end if

The task of merging the quadtreesof the pendinglures for a
givensurfaceis hereassignedto the processin chargeof unlock-
ing this surface(Algorithm 1: (2) and (3)). During the merging
operation,which maybetimeconsuming,processesrequiringthis
surfaceasa receiving surfacefor an energy transferwill still be
ableto usea lure. If it hadbeenassignedto theprocessgettingthe
first energy transferfor a shootingiterationwith this surfaceasan
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emitting surface(Algorithm 1: (1)), this would have delayedthe
following processesassignedto its next energy transfers.

To becomplete,we have to notethata potentialidle time prob-
lem remains,when a new shootingiteration starts,involving an
emitting surfacewhich is currently locked asa receiving surface
(Algorithm 1: (1)). Thiscouldbeavoidedby introducingaheuris-
tic, makingaprocessusingalurewhenit hasto computeanenergy
transfertowardsa receiving surfacewhich ”is likely to becomean
emittingsurfacein anearfuture”.

5 Results and discussion

5.1 Experimentation context

Our experimentswereperformedon the Origin2000describedin
Section2. The operatingsystemrunningon it is the IRIX 6.5.4f
release. The applicationwas compiledwith the MIPSpro 7.2.1
C++ compiler, sincewe still encounterseverecompilationprob-
lems with the 7.3 release. We usedthe maximumperformance
optimizationflags,selectedby: CC -n32 -Ofast=IP27. Our
programwas instrumentedto computethe idle time lost on our
codesynchronizationpoints (locks andfinal synchronizationbar-
rier). We alsousedtheperformanceanalysistool perfex, based
ontheR10000hardwareperformancecounters,to collectinforma-
tionsabouttheexecutions.

Let usnow analyzethenew parallelalgorithmpresentedat the
endof Section4, appliedon thetwo testscenesdescribedin Sec-
tion 3, andshown on Figures3 and5. For the dinnerroomstest
scene,we have chosenalgorithmparametersallowing the whole
memory( ��5�� MB) to residein themain memoryof a singlepro-
cessor, in orderto avoid artifactualsequentialproblems.For sake
of completeness,thesizeLimit parameterwassetto �d*O� meter,
theradiosityRate to �+* �+��7 , andthedesiredratio of remain-
ing total residualenergy to �$�e7 : the sequentialexecutiontook
about��� hoursto complete,creating�f�A�;����� meshelements.

5.2 Results

Figure 9(a) shows the speed-upcurvesobtainedon our two test
scenes,with our new parallelalgorithm. As expected,the class-
roomtestscenedoesnot exhibit enoughconcurrency, for our cho-
sengranularity, to ensureparallelperformanceandscalability. On
thecontrary, thedinnerroomstestsceneappearsto beparticularly
well suitedto parallelcomputation,at leastuntil ��� processors.A
superlinearspeed-upuntil ��� processorscanevenbeunderlined.

The L1 andL2 cachehits ratesachieved with both scenesare
very high, sincethey arerespectively of ,��-7 (L1) and ,��-7 (L2),
for any numberof processors.However, theseexcellent results
have to be mitigatedby the TLB missesproblem. Indeed,on the
sequentialalgorithm,about ����7 of thetotal executiontime seems
to be lost dueto TLB misses.Figure9(b) shows the evolution of
thecycles(counter0), theTLB misses(counter23),ascollectedby
theperfex tool, andthesynchronizationpointsidle time,asmea-
suredby our instrumentedcode,for the dinnerroomstestscene.
Finally, our applicationis not sensibleto falsesharing, asshown
by thesmallvaluesof counter31 (about ��� seconds).

5.3 Discussion

Theresultsobtainedon thedinnerroomstestscene,illustratedon
Figure9, areinteresting,althoughconfusing.Ononehand,ourhy-
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Figure9: Performanceevaluationof ournew algorithm.

potheseson datalocality (Section3) seemto beverified,sincethe
L1 andL2 cachehits ratearevery high,evenif a problemappears
at the TLB level. On the otherhand,our new parallelalgorithm
allows anexcellentloadbalancing,sincethetotal idle time dueto
synchronizationpointsslowly increaseswith the numberof pro-
cessors.Nevertheless,weobservethreetotally differentphasesfor
theobtainedparallelperformance.

At the small ��� -processorscale,the numberof cycles slowly
increasesfrom oneto four processors,dueto theparallelismover-
head,andthennearlyremainsconstantuntil ��� processors.At the
sametime, thenumberof TLB misses,which wasvery high with
oneprocessor, decreasesfrom ���-7 with �$� processors.Thus,for
a similar numberof cycles,lesstime is spentin virtual addresses
translation.Since,at thesametime, idle time waiting on synchro-
nizationpointsdoesnotincrease,weobtainasuperlinearspeed-up.
Then,at themoderate��� -processorscale,theTLB missesandsyn-
chronizationpointsidle timecurvesaremonotonous,but thenum-
berof cyclesstartsto ”strangely”increase.However, this increase
is light enoughso that the speed-upremainsacceptable( ��� with
��� processors).Finally, at thelarge ��� -processorscale,thestrange
increaseof the numberof cycles becomesso important that the
speed-upis decreasing.We canalsonotethat thesynchronization
pointsidle timecurve is now over theTLB missesone.

A detailedanalysisof the idle time lost on synchronization
pointsshows that the idle time increaseis not causedby loadbal-
ancingproblems.This is ratherdueto congestionhappeningwhen
accessingcritical datastructures,suchasthesortedlist of emitting
surfaces,whichhasto beconstantlyupdated,or thetasksmanager,
distributing the energy transfersto the processes.The last point,
for instance,couldbesolvedby assigninga setof energy transfers
to processes,andassociatethis with a taskstealingmechanism.
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Froma datalocality point of view, evenif theL1 andL2 cache
hits ratesobtainedby our applicationarevery high, themainbot-
tleneckappearsto bethelack of TLB locality. However, this does
not seemdirectly relatedto our parallel algorithm, but ratherto
operatingsystemand/orhardwareconsiderations.Indeed,using h
processorsallows to have ����h availableTLB entries,thusgreatly
reducingthenumberof TLB misses.

The remainingtroublespot is the abnormalincreaseof cycles
encounteredat the ��� -processorscale.With thestateof ourknowl-
edgesandexisting tuningtools,we arecurrentlynot ableto givea
satisfyinganswer. We just canmake someassumptionswe would
like to checkin a nearfuture. First, this may be dueto the large
numberof TLB misses,sincethey arehandledby anIRIX kernel
routine. Second,our memoryallocationpackage,basedon IRIX
arena involvesmany hiddenlocks protectingthem: we plan to
experimentthenext versionof this package,which completelyre-
movesthesehiddenlocks.

6 Conclusion and future work

Thenew parallelwaveletradiosityalgorithmintroducedin thispa-
per provesto deliver an optimal load balancing- by minimizing
idle time waiting on locks andsynchronizationbarriersfor other
tasksto becompleted-, at leastfor largescenesexhibiting enough
concurrency. Despitethecommunicationover-costintroducedby
our optimizing techniques,our applicationstill exhibits excellent
datalocality whenexecutedon the Origin2000,sinceit achieves
veryhigh L1 andL2 cachehits rates.

However, we discoveredthat our applicationsuffers from lack
of TLB locality, mostlydueto thereducednumberof TLB entries
of theR10000processor. An expedientto reduceTLB misseswill
beto uselargerpagesizes,thanksto thedplace command.This
solutionis suggestedby SGI tuningguides,especiallyin thecase
of largedynamicdatabaseapplications,whatourprogramis notso
far to be. Anyway, we showed that parallelismalreadyallows to
reduceTLB misses,by multiplying thenumberof TLB entries.

The ��� -processorscalability of our applicationremainsto be
achieved. Indeed,we highlightedan importanttroublespot,aris-
ing at the ��� -processorscale,which is still unexplainableat the
currentstateof our work. Moreover, load balancingmay have
to be enhanced,by optimizing parallel accessesto critical data
structures,andmaybeby reducinggranularityto efficiently handle
smallscenes.Finally, it will alsobeinterestingto testourapplica-
tion with muchlargerscenes,thatis whenthewholememorydoes
notfit into themainmemoryof asingleprocessor, in orderto stress
theOrigin2000memorysysteminteractions.
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à based’ondelettes. PhDthesis,Institut NationalPolytechniquede
Lorraine,1998.

10


