Publications

Publications by year

2015  2014  2013  2012  2011  2010  2009  2008  2007  2006  2005  2004  2003  2002  2001  2000  1999  1998  

Most documents on this website are protected by copyright. By clicking on a PDF icon, you confirm that you or your institution has the right to do so. Note that the definitive versions of all EG papers (Eurographics,...) can be downloaded from http://www.eg.org/EG/DL. ACM papers (Siggraph, ...) can be downloaded from http://www.acm.org/dl/.

 

“Building Centroidal Voronoi Tesselations for Flow Simulation in Reservoirs Using Flow Information”
Romain Merland, Bruno Lévy, Guillaume Caumon and Pauline Collon-Drouaillet
SPE 2011 Conference Proceedings

Abstract: The generation of reservoir grids has to take into account numerous flow parameters, static and dynamic, from the fine-scale geological models to minimize discretization errors. These parameters are generally encoded separately as constraints on cell size, orientation and aspect ratio. In this paper, we propose to encode them all at a time in a Riemannian metric tensor field and to apply a global optimization method. This method is based on Centroidal Voronoi Tesselation algorithms under Lp norm and generates unstructured hex-dominant reservoir grids, optimum in terms of sampling. We appy these principles to generate flow-based reservoir grids. We use a fine-scale velocity field to compute the norm and the directions of the metric tensor: the generated grids are refined in regions of high flow, and the cell facets are oriented along the streamline directions. The grids are therefore suitable to a discretization with two-point flux approximation. The simulation results obtainedd with these grids are then compared with those computed on a standard Cartesian grid of the same size. These first results are encouraging and need further investigation. The method is general, and can account for other dynamic parameters, such as vorticity, that can be weighted and introduced in the metric tensor. Furthermore, CVT algorithms can be adapted to take into account fine-scale static features in the grid generation process. Because the gridding is fully automatic, a possible extension of this work is to update the grid between simulation time steps to reflect changes in boundary conditions.

BibTex reference

@INPROCEEDINGS{Merland:BCVT:2011,
   TITLE      = "Building Centroidal Voronoi Tesselations for Flow Simulation in Reser
                   voirs Using Flow Information",
   AUTHOR     = "Romain Merland and Bruno Lévy and Guillaume Caumon and Pauline
                    Collon-Drouaillet",
   BOOKTITLE  = "SPE 2011 Conference Proceedings",
}